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Geometrization of the Gauge Connection
within a Kaluza–Klein Theory
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We geometrize a generic (abelian and non-abelian) gauge coupling within the frame-
work of a Kaluza–Klein theory, by choosing a suitable matter-field dependence on the
extra coordinates. We first extend the Nöther theorem to a multidimensional spacetime,
the Cartesian product of a 4-dimensional Minkowski space and a compact homoge-
neous manifold (whose isometries reflect the gauge symmetry). On such a “vacuum”
configuration, the extra-dimensional components of the field momentum correspond to
the gauge charges. Then we analyze the structure of a Dirac algebra for a spacetime with
the Kaluza–Klein restrictions. By splitting the corresponding free-field Lagrangian, we
show how the gauge coupling terms arise.
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1. BASIC STATEMENTS

The works of Kaluza (1921) and Klein (1926a,b) allowed one to include the
electromagnetic field within a geometrical picture, by adding an extra space-like
dimension to the spacetime; in spite of this success, the Kaluza–Klein theories
had their full development only after the formulation of non-abelian gauge theo-
ries (Mendl and Shaw, 1984; Coleman, 1988). In fact, the main achievement of
this approach relies on the geometrization of Yang–Mills fields, whose group of
symmetry admits a representation in terms of an isometry in the extra-dimensions
(Cho and Freund, 1975; Cho, 1975). (For a complete discussion of this topic,
see the works collected in (Appelquist et al., 1987) or the review presented in
(Overduin and Wesson, 1997); see also (Cremmer et al., 1978) for an extension
of the multidimensionality idea to supergravity theory.)

The price that the Kaluza–Klein theories have to pay for such a geometrical
picture of unification, consists of restrictions on the physically admissible space-
time an coordinates transformations. In fact, the spacetime has to take the structure
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of a generic 4-dimensional manifold plus a compact homogeneous hypersurface
(such a feature implies a violation of the Equivalence Principle) and along the
extra-dimensions only translations of the coordinates are available (so violating
the Principle of General Relativity as extended to a multidimensional spacetime).

However, the geometrical theories of unification can be settled down within
General Relativity by means of the so-called Spontaneous Compactification pro-
cess (Witten, 1981). In this framework, the Lagrangian of the theory is yet the mul-
tidimensional Einstein–Hilbert one, but we observe the Kaluza–Klein restriction
because the “vacuum state” has the compactified structure (i.e. it is a 4-dimensional
Minkowski spacetimes a compact homogeneous manifold); thus, we may inter-
pret the dimensional compactification as a spontaneous breaking of the Poincaré
symmetry.

The aim of the present analysis is to extend the Kaluza–Klein approach
even to the gauge connection associated to the Yang–Mills fields; it is achieved by
splitting a free multidimensional spinor field Lagrangian and fixing the hypotheses
necessary for the appearance (within the reduced 4-dimensional action) of the
gauge connection terms.

While Sections 2 and 3 are devoted to review, respectively, the gauge theo-
ries and the Kaluza–Klein approach, in Section 4, as first step of this work, we
generalize the Nöther theorem to the vacuum of a Kaluza–Klein theory; we show
that the extra-dimensional components of the momentum operator correspond to
the conserved charges associated to the gauge symmetry. Such an identification
requires suitable hypotheses on the “matter” fields dependence with respect to
the extra-coordinates; we take such a dependence in the form of a phase factor
which include the gauge generators. In Section 5, we analyze the Dirac algebra
on a Kaluza–Klein spacetime and see how the γ -matrices relations are preserved
by the dimensional reduction process. The tangent space projection of the spinor
connection is discussed to outline that its extra-dimensional component is a free
quantity of our problem.

In Section 6, on the basis of a Lagrangian approach, we split the action of
a free multidimensional spinor field and, after the dimensional reduction (here
is crucial to take the integral over the extra-coordinates), we get the action of
a 4-dimensional free spinor field plus the gauge coupling with the Yang–Mills
fields; undesired terms appearing in the splitted action are removed by fixing the
residual spinor connection components.

In Section 7 brief concluding remarks are provided to stress a difference
existing between the abelian and non-abelian case.

2. GAUGE THEORIES

Let us assign, on the Minkowski space M4 (endowed with the coordinates
system {xµ} µ = 0, 1, 2, 3), a set of fields φr (xµ) (r = 1, 2, . . . , n ∈ N ), whose
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Lagrangian density L(φr, ∂µφr ) is invariant under the unitary transformations

φr = (exp{igωa Ta})rsφs, (1)

where ωa (a = 1, 2, . . . , K ∈ N ) denote constant parameters. while Ta rs are the
K-dimensional (Hermitian) group generators corresponding to the coupling con-
stant g.

In agreement with the Nöther theorem (Mendl and Shaw, 1984; Coleman,
1988), this invariance implies the existence of the conserved charges

Qa = ig

∫
E3

d3xπrTa rsφs, (2)

πr being the conjugate momentum to φr and E3 the three-dimensional Euclidean
space. We upgrade the global symmetries (1), to a (local) gauge one, by requiring
that their parameters become spacetime functions, i.e. ωa = ωa(xµ). The invari-
ance of the theory (i.e. of the Lagrangian) under the gauge symmetries involves
new fields Aa

µ(xν) into the dynamics (the so-called Yang–Mills fields); such fields,
under infinitesimal gauge transformations (ωa is replaced by δωa � 1), behave as

Aa
µ → Aa

µ − εabcδωb Ac
µ − ∂µδωa ; (3)

here the quantities εabc denote the structure constants of the Lie group and are
defined via the relation [Ta, Tb] = iεc

abTc (indices a, b, c are raised and lowered
in Euclidean sense and repeated ones are summed from 1 to K). The fields Aa

µ are
said abelian or non-abelian depending on whether the structure constants vanish
or not.

In gauge invariant form, the Lagrangian density of the theory rewrites as

L(φr, Dµφr ) − g2

4
Fa µνFa µν ; (4)

where Dµφr ≡ ∂µφr + igTa rsA
a
µφs indicates the gauge covariant derivative

and the quadratic term in the gauge tensors Fa
µν ≡ ∂νAµ − ∂µAν + εabc Ab

µAc
ν

provides the gauge vector fields dynamics.

3. KALUZA–KLEIN PARADIGM

Within a Kaluza–Klein theory (Appelquist et al., 1987), the gauge fields
are geometrized by adding, to the 4-dimensional spacetime V4 (having internal
coordinates xγ γ = 0, 1, 2, 3), a compact homogeneous D-dimensional space
	D (having a very small size and adapted coordinates θ l l = 4, . . . , D, whose
isometries corresponds to the gauge symmetries. If we take the dimension of
the gauge group equal to that one of the extra-space (i.e. K = D), then the
whole manifold V4+D = V44 × 	D admits, in the 4 + D-bein representation,
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the line element

ds2 = η(C)(D)e
(C)
A e

(D)
B dXA dXB η(C)(D) = diag{1,−1, . . . ,−1}, (5)

being XA, A,B,= 0, 1, . . . , D the coordinates on V4+D (i.e. XA = {xµ, θ l}),
while the indices in parenthesis refer to the 4 + D-bein; here the vectors e

(C)
A take

the form

e(A)
µ = (

u(ν)
µ (xγ ) ; γA(n)

µ (xγ )
)

(6)

e(A)
m = (

0; ξ (n)
m (θ l)

)
. (7)

The reciprocal vectors eA
(C) (such that e(C)

A eB
(C) = δB

A ; e
(C)
A eA

(D) = δ
(C)
(D)) are as follows

eA
(µ) = (

uν
(µ)(x

γ ); −γA(n)
ν (xγ )uν

(µ)(x
γ )ξm

(n)(θ
l)
)

(8)

eA
(m) = (

0; ξn
(m)(θ

l)
)

; (9)

here the vectors uν
(µ) and ξn

(m) are reciprocal respectively to u(ν)
µ and ξ (n)

m , while
γ = constant.

The vectors ξ (m)
n correspond to the Killing fields of the compact manifold 	D

and therefore satisfy the relations

∂nξ
(p)
m − ∂mξ (p)

n = C
(p)
(q)(r)ξ

(q)
m ξ (r)

n (10)

D∇nξ
(p)
m + D∇mξ (p)

n = 0 , (11)

where C
(p)
(q)(r) denote the structure constants of the isometries group on 	D and the

covariant derivative D∇m refers to the extra-dimensional metric.
The Kaluza–Klein paradigm is implemented by requiring the explicit sym-

metry breaking of the 4+D-dimensional diffeomorphisms into the 4-dimensional
general coordinates transformations xµ′ = xµ′

(xν) and a translation along the
extra-coordinates θm′ = θm + ω(p)(xν)ξm

(p). Under infinitesimal transformations
of the previous type, u(ν)

µ behave like 4-bein vectors, ξ (n)
m like scalar quantities and

A(m)
µ transform according to gauge 4-fields.

The geometrization of a gauge group is achieved by requiring that its structure
constants εabc and the coupling constant g coincide, respectively, with those of the
isometries C(p)(q)(r) and with the constant γ

√
c3/16π 4G (where the 4-dimensional

Newton constant reads from the multi-dimensional one as 4G ≡ 4+DG/V ,
V being the volume of 	D). In fact, hence the 4 + D-dimensional Einstein–
Hilbert action provides, after dimensional reduction, the 4-dimensional Einstein-
Yang–Mills one (i.e. we get ordinary 4-gravity and a Yang–Mills contribution).
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4. NÖTHER THEOREM

We discuss the invariance of a 4+D-dimensional field theory, on the space-
time M4 × 	D (in absence of gauge fields, i.e. A(m)

µ ≡ 0) under a translation of
the coordinates, i.e. we extend the Nöther theorem (Mendl and Shaw, 1984) to the
extra-dimensional context.

Let us consider a set of fields ϕr (xµ, θm) (r = 1, 2, . . . , n), whose Lagrangian
density L is invariant under the infinitesimal coordinates displacement xµ′ =
xµ + δωµ and θm′ = θm + δω(p)ξm

(p) with (δωµ δω(p)) = constant; in 4 + D-

dimensional notation, we take the infinitesimal coordinates transformation XA′ =
XA + δω(B)eA

(B) (with δω(A) = (δωµ, δω(p)) and uν
(µ) = δν

(µ)) which, in turn,
induces the corresponding fields transformation

ϕ′
r = ϕr + δϕr, δϕr = ∂Aϕre

A
(B)δω

(B) . (12)

The Lagrangian density invariance provides

∂ALeA
(B)δω

(B) = ∂A

(
∂L

∂(∂Aϕr )
δϕr

)
−

[
∂A

(
∂L

∂(∂Aϕr )

)
− ∂L

∂ϕr

]
δϕr . (13)

Now, using the Euler–Lagrange equations

4+D∇A

(
∂L

∂(∂Aϕr )

)
− ∂L

∂ϕr

= 0 (14)

and observing that, for M4 × 	D , we have 4+D∇AeA
(B) = 0 (here 4+D∇A denotes

the covariant derivative with respect to the metric JAB), Eq. (12) rewrites as

4+D∇A

(
∂L

∂(∂Aϕr )
∂Cϕre

C
(B) − LeA

(B)

)
= 0 . (15)

This continuity equation leads to the conserved 4+D-dimensional fields
momentum

P(A) =
∫
E3×	D

d3xdDθ
{
�r∂Bϕre

B
(A) − Le0

(A)

}
, (16)

where �r corresponds to the conjugate momenta of ϕr and behaves as
4 + D-dimensional densities of weigh 1/2.

The dependence of the fields ϕr on the extra-coordinates θm has to be in the
form of a “phase” factor,” because their matrix elements must not depend on them,
i.e. we assume the structure

ϕr = 1√
V

e−iτrs (θm)φs(x
µ) ⇒ �r = 1√

V
πs(x

µ)eiτsr (θm), (17)

being φr and πr 4-dimensional conjugate variables, while τrs(θm) denoting generic
Hermitian matrices compatible with the symmetries of 	D .
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The substitution of these expressions into Eq. (16) provides the outcomings

Qµ ≡ Pµ =
∫
E3

d3x
{
πr∂µφr − Lδ0

µ

}
(18)

Q(m) = − i

V

∫
E3×	D

√
Kd3xdDθ

{
πrξ

n
(m)∂nτrs(θ

m)φs

}
, (19)

where K refers to the determinant of the extra-dimensional metric.
We see that the 4-dimensional component of the conserved current corre-

sponds to the ordinary 4-momentum vector. Furthermore, we take the position
τrs(θm) = T(p) rsλ

(p)
(q)�

(q)(θm), T(p) rs being the gauge generators, λ
(p)
(q) a constant

matrix to be determined and �(q) expandible in the harmonic functions of 	D

(Salam and Strathdee, 1982); hence, the charges Q(m) rewrite

Q(m) = −i

√
c3

16π 4G

∫
E3

d3x{πrT(m) rsφs} . (20)

as soon as we identify the matrix λ−1(p)
(q) with the quantities

λ−1(p)
(q) =

√
16π 4G

c3/2V

∫
	D

√
KdDθ

{
ξm

(q)∂m�(q)
}

, (21)

where by λ−1(p)
(q) we denote the inverse matrix of λ

(p)
(q) (i.e. λ−1(p)

(r) λ
(r)
(q) = δ

(p)
(q) ).

Equation (20) coincides (apart from a factor −γ which do not affect the con-
servation law) with the conserved quantities (2) and therefore it shows how, in a
Kaluza–Klein theory, the charges associated to an abelian or non-abelian gauge
theory come out from the extra-components of the fields momentum vector.

However, under the same assumption, Eqs. (12) and (17) provide, for
the infinitesimal coordinates transformation xµ′ = xµ, θm′ = θm + δω(p)ξm

(p), the
following gauge transformation on φr

φ′
r = (δrs − iδω(q)λ

(n)
(q)ξ

m
(n)∂m�(p)T(p) rs)φs. (22)

Expression (22) becomes equivalent to (1) only if we require

ξm
(n)∂m�(p) = δ

(p)
(n) ⇒ ξ (n)

m = ∂m�(n) . (23)

This result is equivalent to the vanishing of all the structures constants C
(p)
(q)(r).

Thus, the extra-dimensional components of the 4+D-momentum vector become
those 4-dimensional ones of a conserved charge in correspondence to abelian or
non-abelian gauge theories; but the gauge transformation of the fields is induced by
the translation along the extra-dimensions only for the abelian case, when the line
element of 	D can be reduced to the Euclidean one, i.e. Ddl2 = ∑D

m=1(d�m)2.
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5. DIRAC ALGEBRA

In a flat 4+D-dimensional Minkowski space M4+D , the Lagrangian density
of a set of massless spinor fields (the presence of a mass term does not affect the
later analysis, while the chirality of the spinors is not addressed here (Wetterich,
1983)) �r (XA) takes the form

L� = i

2
(∂A�̄rγ

A�r − �̄γ A∂A�r ), (24)

where by γ A (�̄ = �+γ 0) we denote the Dirac matrices, satisfying the anti-
commutation relations

{γA, γB} = 2IηAB, (25)

I being the identity matrix and ηAB the Minkowskian metric.
On a curved 4+D-dimensional spacetime, the Dirac matrices become func-

tions on the manifold and have to be taken in the form γA(XB) = γ(B)e
(B)
A , being

the 4+D-bein components equal to the constant matrices (24).
Thus, on a curved spacetime, the relation (25) rewrites as

{γA(XC) , γB(XC)} = 2IjAB(XC) , (26)

In correspondence to the vectors (6) and (8) the matrices γ µ = γ (ν)u
µ

(ν) and γµ =
γ(ν)u

(ν)
µ define the appropriate 4-dimensional Dirac algebra with respect to the

4-metric gµν ≡ η(ρ)(σ )u
(ρ)
µ u(σ )

ν . On a curved spacetime 4+DV , the Lagrangian
density (24) rewrites as

LCurv
� = i

2

(
DA�̄rγ

A�r − �̄γ ADA�r

)
DA ≡ ∂A ± �A , (27)

where (−) and (+) refer respectively to the application of the spinor derivative
DA on � and �̄. The quantity �A is a kind of “gauge connection” for the Lorentz
group and reads

�A = 	(B)(C)�(B)(C) A (28)

�(B)(C) A ≡ eD
(C)

4+D∇Ae(B)D (29)

	(A)(B) ≡ 1

4

[
γ (A), γ (B)

]
. (30)

Here 	(A)(B) is the generator of the Lorentz group in the spinor representation,
while �(B)(C) A plays the role of the corresponding six-gauge vectors (which in
the Einstein theory can be expressed via the bein vectors e

(B)
A ).

In agreement to the Spontaneous Compactification idea, within a Kaluza–
Klein theory, the 4+D-dimensional Lorentz group is broken (near the “vacuum
state“ M4 × 	D) into the 4-dimensional Lorentz one plus the D-dimensional
translation group. Therefore, in this framework, the bein component of the quantity
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(28) (i.e. �(A) ≡ �BeB
(A)) has to admit only the 4-dimensional term of the form (28),

i.e. �(µ) = 	(ν)(ρ)uα
(ρ)u

β

(µ)
4∇βuα(ν).

The form of the bein component �(m) will be determined in the next section
by requiring that, on V4 × 	D , the Lagrangian density (27) provides the gauge
coupling between the 4-spinors and the Yang–Mills fields.

6. GEOMETRIZATION OF THE GAUGE CONNECTION

We start from the following action for a set of 4+D-dimensional spinor fields

SCurv
� = i

2c

∫
V4×	D

d4xdDθ
{
E(D(A)�̄rγ

(A)�r − �̄γ (A)D(A)�r )
}
, (31)

being E ≡ det e(B)
A . Recalling that γ (A)D(A) ≡ γ (A)(∂(A) ± �(A)), we can split the

previous action via the framework of Sections 4 and 5.
In fact, we have

∂(A) ≡ eB
(A)∂B, (32)

and hence, by (8), the following relations result

∂(ρ) = u
µ

(ρ)∂µ − γ u
µ

(ρ)A
(p)
µ ξm

(p)∂m ≡ 4∂(ρ) − γ u
µ

(ρ)A
(p)
µ ξm

(p)∂m (33)

∂(m) = ξ
p

(m)∂p ≡ D∂(m); (34)

where 4∂(a) and D∂(m) denote the directional derivatives, respectively, on V4 and
	D .

Furthermore, we get

γ (A)�(A) = γ (µ)	(ρ)(σ )�(ρ)(σ )(µ) + γ (m)�(m) (35)

∂(m)�r = −iξn
(m)T(p) rsλ

(p)
(q)∂n�

(q)�s (36)

∂(m)�̄r = iξn
(m)�̄sT(p) srλ

(p)
(q)∂n�

(q) (37)

as well as �̄r�r = ψ̄rψr/V , being, in agreement with (17), {ψ̄(xµ) , ψ(xµ)} the
4-dimensional spinor fields.

Putting together these results and taking in (31), the integral over the extra-
coordinates, it provides the following 4-dimensional action

SCurv
� = 1

c

∫
V4

d4xU

{
i

2

(
4D(µ)ψ̄rγ

(µ)ψr − ψ̄γ (µ) 4D(µ)ψr

) + Lint

}
(38)

Lint = gψ̄rγ
(ν)u

µ

(ν)A
(m)
µ T(m) rsψs − ψ̄rγ

(m)

(√
c3

16π 4G
T(m) rs − iV �(m)

)
ψs,

(39)
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where U ≡ det u(a)
µ and 4D(µ) denotes the ordinary 4-dimensional spinor derivative

projected on the 4-bein.
In the previous equation, the first two terms provide the free 4-spinor fields,

while those ones in Sint correspond respectively to the desired gauge coupling and
to a contribution which is not experimentally detected; to remove such a term we

need the choice �(m) = −i

√
c3/16π 4G

V
T(m) rsI .

At last, the previous equation rewrites

SCurv
� = 1

c

∫
V4

d4xU

{
i

2

((
4D(µ) − igT(m) rsA

(m)
(µ)

)
ψ̄rγ

(µ)ψs − ψ̄rγ
(µ)

× (
4D(µ) + igT(m) rsA

(m)
(µ)

)
ψs

)}
. (40)

We see how, after the dimensional reduction, the 4-dimensional action contains
the correct gauge coupling, which appears as a consequence of the geometrical
nature of the Yang–Mills fields within a Kaluza–Klein theory.

7. BRIEF CONCLUDING REMARKS

Putting together the geometrization of the Yang–Mills fields, performed
in the usual Kaluza–Klein approach, with the result here obtained, we
see that, starting from the 4+D-dimensional gravity–matter action 4+DS =
4+DSE−H + 4+DScurv

� , after the dimensional reduction, we get a 4-dimensional
action describing all the appropriate bosonic and fermionic components with
their relative couplings, i.e. (with obvious notation) 4S = 4SE−H,� + 4Scurv

Y−M +
4Scurv

ψ + 4Sint.
The earlier analysis shows how, in the framework of a Kaluza–Klein theory,

not only the Yang–Mills fields can be geometrized, but also their gauge couplings
outcome from the splitting of the geometrical terms contained in the matter action.

The assumptions at the ground of our point of view are supported by the
interpretation of the extra-dimensional components of the fields momentum in
terms of gauge charges. However, a difference has to be emphasized between
the abelian and non-abelian case; in fact, while for an abelian group the transla-
tions along the extra-dimensions induce directly the 4-dimensional gauge trans-
formations, the latter one, in the non-abelian case can be recognized only in the
structure of the (dimensionally reduced) 4-dimensional action. In this sense, the
geometrization of the non-abelian gauge connection privileges the Lagrangian
representation of the dimensional reduction with respect to an approach based
on the field equations. Indeed, if we write down the 4+D-dimensional Dirac
equation and split it in terms of 4-dimensional variables, then to get the right
gauge coupling terms it would be necessary to carry out an additional integration
over the extra-dimensional coordinates; however, this same picture would appear
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when splitting the 4+D-dimensional Einstein equations toward the 4-dimensional
Einstein–Yang–Mills theory. Thus the different behavior, outlined earlier, between
the abelian and non-abelian theories with respect to a geometrical interpretation,
is a general feature of the Kaluza–Klein approach and it is not due to the specific
assumptions we addressed here.
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